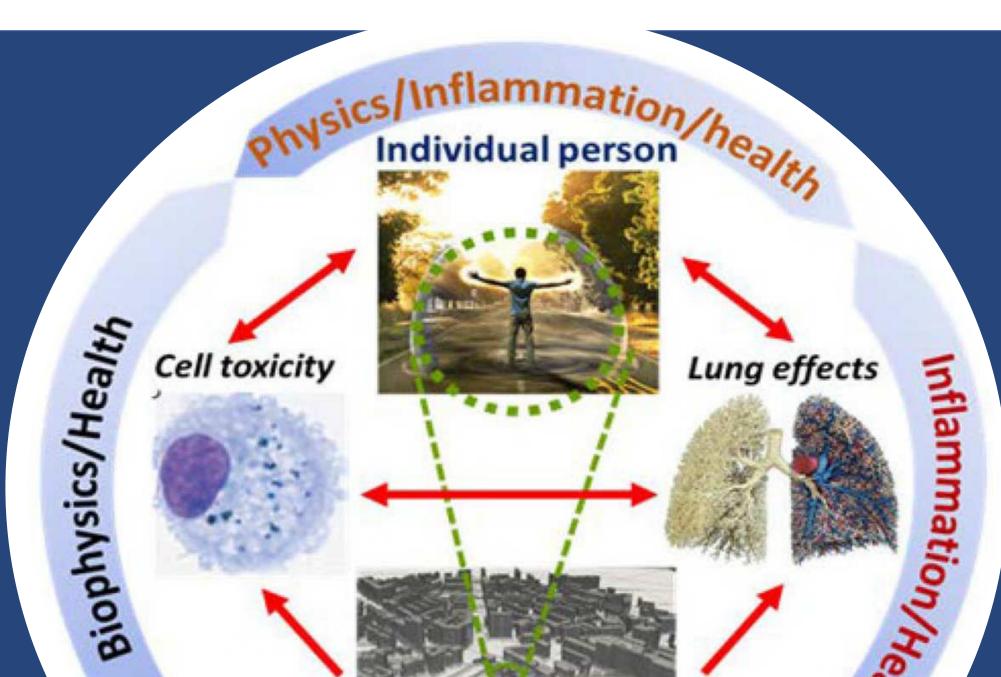


Imperial College London

Nanoscale Analysis of London Pollutant Particles and their Interaction with Airway Epithelial Cells

Alexander Mitchener

Supervisors: Prof. Alexandra Porter, Prof. Mark Sephton, Prof. Fan Chung Academic Partner: Prof. DK Arvind (University of Edinburgh)



Engineering and Physical Sciences Research Council

Motivation

Statement of the Problem:

- Exposure to respirable air pollution leads to 9 million excess deaths each year.
- The contribution of PM_{0.1} to this figure is unknown, as is the composition and differential toxicity of PM constituents.
- Current air quality guidance only limits mass fractions of total PM₁₀ and PM_{2.5}.

Objectives

- 1. To measure the sizes, size distributions and chemistries of $PM_{2.5} PM_1 \& PM_{0.1}$ at different sites around London.
- 2. To relate intracellular $PM_{2.5}$ and $PM_{0.1}$ size distribution, chemistry and location to altered metabolism of organelles in nasal epithelial cells.
- 3. To determine biochemical response of nasal epithelial cells from INHALE cohort.

Research Stages

Personal environment

Physics/Pollution

1. Capture and Monitoring

2. Materials Characterisation / Compositional analysis

3. Respiratory Toxicology

4. Machine Learning for Personal Toxicity Profile

Stage 2

Placement:

Statistical and machine learning approaches to develop a personal predictive toxicity profile for INHALE subjects.

Stage 1

1. Pair online time-resolved PM size distribution data with

2. Offline gravimetric analysis (filter weight) of PM mass concentration

• using electrical low-pressure and cascade impactors respectively

Table 1: Explanation of impactor selection for ultrafine particle collection

a Type of microenvironment (concentration; µgm ⁻³)		b Instrument (Flow rate, LPM)	c Mass extracted (µgmin ⁻¹)	d Time for physicochemical assessment (hrs)	e Time for toxicity assessment (hrs)
			= (b × (60/1000) × a/(60))	(100 μ g of mass needed) (d) = 100/(a × b × (60/1000))	(1000 μg of mass needed) (e) = 1000/(a × b × (60/1000))
Roadside	(3.2 ± 2.2)	Harvard Compact	0.1	17.4	173.6
Parks	(1.6 ± 0.9)	Cascade impactor (HCCI)			
Indoors	(4.1 ± 3.5)	(30 LPM)			
Traffic intersections	(5.6 ± 4.1)				

Choosing the right technique:

- Destructive vs non-destructive
- Detection limit
 - Bulk/micro/nano-scale
- Quantity required for operation
- Target material / properties

Table 2: Workflow and available techniques for PM characterisation

Metal Content							
Technique	Used For	Destructive/Processed					
TEM & SEM	Imaging (down to individual particles),	Processed					
	Agglomeration State, Morphology						
with EDX/EELS	Elemental Composition,						
	map metal valence to predict oxidative potential						
→ with XRD/e ⁻ D	Crystallinity						
ICP-MS	Bulk Analysis of Trace metal content	Destructive					
Volatile Organic Compounds							
Technique	Used For	Destructive/Processed					
GC-MS	Identification of VOC's/PHC's/PAH's	Destructive					
GC-C-IRMS	Isotopologue distribution of VOCs/PAHs	Destructive					
Abbreviations:ICP-MS: Inductively Coupled ITEM/SEM: Transmission/Scanning ElectronMass SpectrometryMicroscopyGC-MS: Gas ChromatographEDX:EnergyDispersiveX-raySpectrometry							

Spectroscopy

EELS: Electron Energy Loss Spectroscopy

aracterisation

Chromatography-

Mass

Ratio

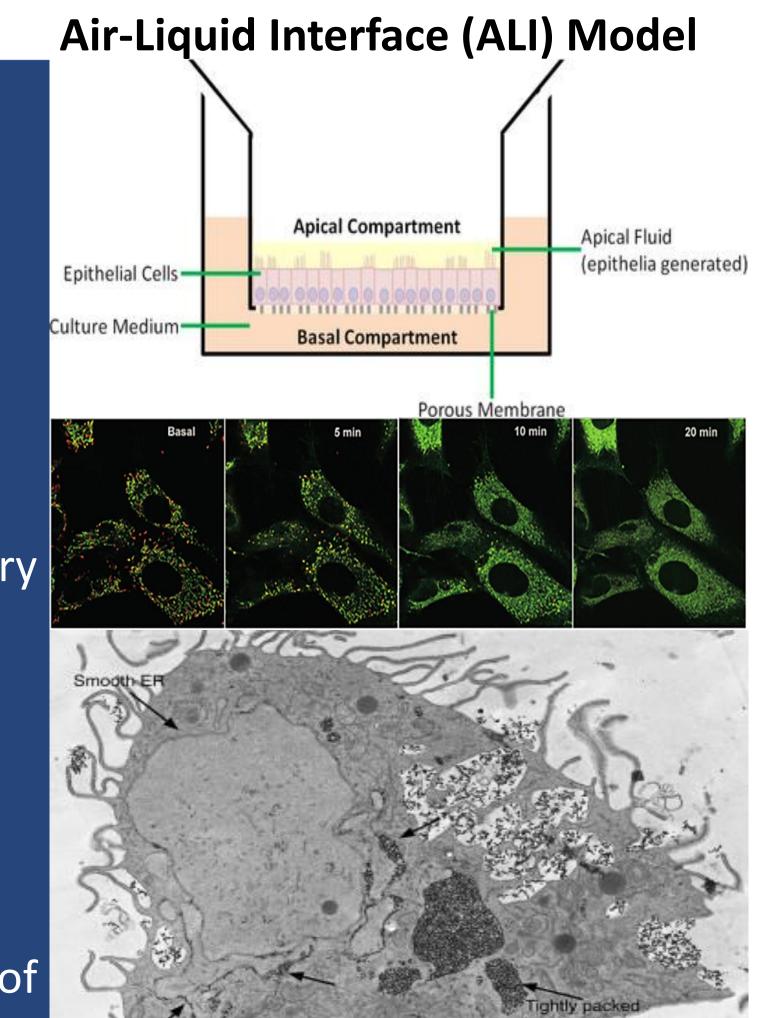
Stage 3

Cells exposed to PM_{2.5} and PM_{0.1}:
Nasal Epithelial (INHALE subjects)

Toxicological Assays

 (1.0 ± 0.4)

Green infrastructure

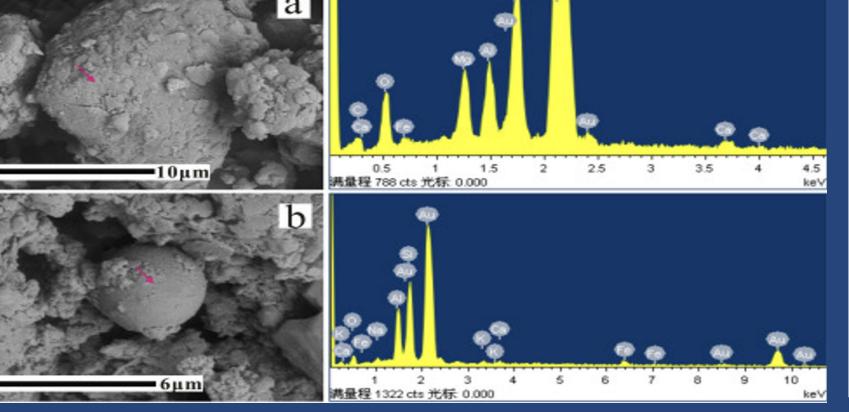

roadside (behind

vegetation)

- ROS: CellRox dye
- Mitochondrial ROS: MitoSOX
- Membrane potential: JC-1
- ELISA: detection of pro-inflammatory markers
 e.g. IL-6/8, alarmins IL-25/33/TSLP

Intracellular compartmentalisation:

- TEM: imaging
- SEM-EDX: chemical mapping
- ICP-MS: uptake; metal content of



e⁻/XRD: electron/X-ray Diffraction

Spectrometry

Combustion-Isotope

GC-C-IRMS:

Figure 5: Representative of imaging and data acquisition from SEM-EDX chemical mapping of elemental composition

Gas

Bibliography:

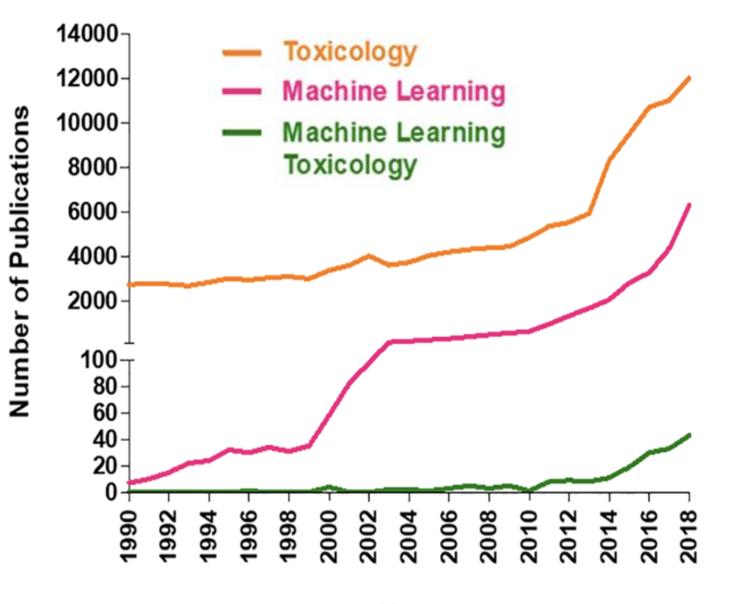
INHALEProject:https://www.imperial.ac.uk/earth-science/research/inhale/Chen, Shuai, and Jennifer Schoen. " Reproduction in DomesticAnimals,vol.54,2019,pp.38–45.,

https://doi.org/10.1111/rda.13481.

Motskin, M., et al. *Biomaterials*, vol. 30, no. 19, 2009, pp. 3307– 3317., https://doi.org/10.1016/j.biomaterials.2009.02.044. Huang, Yi, et al. *Environmental Geochemistry and Health*, 2021, https://doi.org/10.1007/s10653-021-01115-6. Vo, Andy H., et al. *Chemical Research in Toxicology*, vol. 33, no. 1, 2019, pp. 20–37., https://doi.org/10.1021/acs.chemrestox.9b00227. Thermofisher; JC-1 picture: https://www.thermofisher.com/uk/en/home/life-science/cellanalysis/cell-viability-and-regulation/apoptosis/mitochondriafunction/jc-1-dye-mitochondrial-membrane-potential.html Kelly, Frank J., and Julia C. Fussell. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 378, no. 2183, 2020, p. 20190322., https://doi.org/10.1098/rsta.2019.0322.

intra/extra-cellular PM

Stage 4


Question:

 How to relate material properties and composition of PM to cellular toxicity and clinical symptoms?

End goal:Predictive

 Predictive toxicity index for subject exposure to each fraction and component of air pollution Annual Publication Trends Machine Learning and Toxicology

1µm

Year